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1 Scope of the Chapter

This chapter provides routines for the solution of large sparse systems of simultaneous linear equations.
These include iterative methods for real nonsymmetric and symmetric, complex non-Hermitian and
Hermitian linear systems. Some further direct methods are currently available in Chapter F01 and
Chapter F04, and will be added to this chapter at future marks.

For a wider selection of routines for sparse linear algebra, users are referred to the Harwell Sparse Matrix
Library (available from NAG), especially for direct methods for solving linear systems (see Section 2.2).

2 Background to the Problems

This section is only a brief introduction to the solution of sparse linear systems. For a more detailed
discussion see for example Duff et al. [2] for direct methods, or Barrett et al. [1] for iterative methods.

2.1 Sparse Matrices and Their Storage

A matrix A may be described as sparse if the number of zero elements is sufficiently large that it is
worthwhile using algorithms which avoid computations involving zero elements.

If A is sparse, and the chosen algorithm requires the matrix coefficients to be stored, a significant saving
in storage can often be made by storing only the non-zero elements. A number of different formats
may be used to represent sparse matrices economically. These differ according to the amount of storage
required, the amount of indirect addressing required for fundamental operations such as matrix–vector
products, and their suitability for vector and/or parallel architectures. For a survey of some of these
storage formats see Barrett et al. [1].

Some of the routines in this chapter have been designed to be independent of the matrix storage format.
This allows users to choose their own preferred format, or to avoid storing the matrix altogether. Other
routines are the so-called black-boxes, which are easier to use, but are based on fixed storage formats. Two
such formats are currently provided. These are known as coordinate storage (CS) format and symmetric
coordinate storage (SCS) format.

2.1.1 Coordinate storage (CS) format

This storage format represents a sparse matrix A, with NNZ non-zero elements, in terms of three one-
dimensional arrays — a real or complex array A and two integer arrays IROW and ICOL. These arrays
are all of dimension at least NNZ. A contains the non-zero elements themselves, while IROW and ICOL
store the corresponding row and column indices respectively.

For example, the matrix

A =




1 2 −1 −1 −3
0 −1 0 0 −4
3 0 0 0 2
2 0 4 1 1

−2 0 0 0 1




might be represented in the arrays A, IROW and ICOL as

A = (1,2,−1,−1,−3,−1,−4,3,2,2,4,1,1,−2,1)

IROW = (1,1,1,1,1,2,2,3,3,4,4,4,4,5,5)

ICOL = (1,2,3,4,5,2,5,1,5,1,3,4,5,1,5).

Notes

(i) The general format specifies no ordering of the array elements, but some routines may impose a
specific ordering. For example, the non-zero elements may be required to be ordered by increasing
row index and by increasing column index within each row, as in the example above. A utility
routine is provided to order the elements appropriately.

(ii) With this storage format it is possible to enter duplicate elements. These may be interpreted in
various ways (raising an error, ignoring all but the first entry, all but the last, or summing, for
example).
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2.1.2 Symmetric coordinate storage (SCS) format

This storage format is suitable for symmetric and Hermitian matrices, and is identical to the CS format
described in Section 2.1.1, except that only the lower triangular non-zero elements are stored. Thus, for
example, the matrix

A =




4 1 0 0 −1 2
1 5 0 2 0 0
0 0 2 1 0 −1
0 2 1 3 1 0

−1 0 0 1 4 0
2 0 −1 0 0 3




might be represented in the arrays A, IROW and ICOL as

A = (4,1,5,2,2,1,3,−1,1,4,2,−1,3)

IROW = (1,2,2,3,4,4,4,5,5,5,6,6,6)

ICOL = (1,1,2,3,2,3,4,1,4,5,1,3,6).

2.1.3 Some considerations for SMP platforms

Although the SCS format is more economical in terms of storage requirements, it is less efficient for
carrying out matrix operations when multithreading on SMP systems. For efficiency reasons, it is
recommended that symmetric matrices be stored in full CS format, i.e., storing the complete matrix
rather than its lower triangular part, when this is feasible.

2.2 Direct Methods

Direct methods for the solution of the linear algebraic system

Ax = b (1)

aim to determine the solution vector x in a fixed number of arithmetic operations, which is determined
a priori by the number of unknowns. For example, an LU factorization of A followed by forward and
backward substitution is a direct method for (1).

If the matrix A is sparse it is possible to design direct methods which exploit the sparsity pattern and
are therefore much more computationally efficient than the algorithms in Chapter F07, which in general
take no account of sparsity. However, if the matrix is very large and sparse, then iterative methods (see
Section 2.3) are generally more efficient still.

This chapter currently provides direct methods for sparse real nonsymmetric, complex non-Hermitian,
real symmetric positive-definite and complex Hermitian positive-definite systems. Further direct methods
may be found in Chapter F01, Chapter F04 and Chapter F07, and will be introduced into Chapter F11
at a future mark. For more details see Section 3.4.

2.3 Iterative Methods

In contrast to the direct methods discussed in Section 2.2, iterative methods for (1) approach the solution
through a sequence of approximations until some user-specified termination criterion is met or until some
predefined maximum number of iterations has been reached. The number of iterations required for
convergence is not generally known in advance, as it depends on the accuracy required, and on the
matrix A — its sparsity pattern, conditioning and eigenvalue spectrum.

Faster convergence can often be achieved using a preconditioner (Golub and Van Loan [5], Barrett et al.
[1]). A preconditioner maps the original system of equations onto a different system

Āx̄ = b̄, (2)

which hopefully exhibits better convergence characteristics: for example, the condition number of the
matrix Ā may be better than that of A, or it may have eigenvalues of greater multiplicity.

An unsuitable preconditioner or no preconditioning at all may result in a very slow rate or lack of
convergence. However, preconditioning involves a trade-off between the reduction in the number of
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iterations required for convergence and the additional computational costs per iteration. Also, setting
up a preconditioner may involve non-negligible overheads. The application of preconditioners to real
nonsymmetric, complex non-Hermitian, real symmetric and complex Hermitian systems of equations is
further considered in Section 2.4 and Section 2.5.

2.4 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian
Linear Systems

Many of the most effective iterative methods for the solution of (1) lie in the class of non-stationary
Krylov subspace methods [1]. For real nonsymmetric and complex non-Hermitian matrices this class
includes:

the restarted generalized minimum residual (RGMRES) method [10];

the conjugate gradient squared (CGS) method [12];

the polynomial stabilized bi-conjugate gradient (Bi-CGSTAB (�)) method [13], [11];

the transpose-free quasi-minimal residual method (TFQMR) [3], [4].

Here we just give a brief overview of these algorithms as implemented in Chapter F11. For full details
see the routine documents for F11BDF and F11BRF.

RGMRES is based on the Arnoldi method, which explicitly generates an orthogonal basis for the Krylov
subspace span{Akr0}, k = 0, 1, 2, . . ., where r0 is the initial residual. The solution is then expanded
onto the orthogonal basis so as to minimize the residual norm. For real nonsymmetric and complex non-
Hermitian matrices the generation of the basis requires a ‘long’ recurrence relation, resulting in prohibitive
computational and storage costs. RGMRES limits these costs by restarting the Arnoldi process from the
latest available residual every m iterations. The value of m is chosen in advance and is fixed throughout
the computation. Unfortunately, an optimum value of m cannot easily be predicted.

CGS is a development of the bi-conjugate gradient method where the nonsymmetric Lanczos method is
applied to reduce the coefficient matrix to tridiagonal form: two bi-orthogonal sequences of vectors
are generated starting from the initial residual r0 and from the shadow residual r̂0 corresponding
to the arbitrary problem AH x̂ = b̂, where b̂ is chosen so that r0 = r̂0. In the course of the
iteration, the residual and shadow residual ri = Pi(A)r0 and r̂i = Pi(A

H)r̂0 are generated, where
Pi is a polynomial of order i, and bi-orthogonality is exploited by computing the vector product
ρi = (r̂i, ri) = (Pi(A

H)r̂0, Pi(A)r0) = (r̂0, P
2
i (A)r0). Applying the ‘contraction’ operator Pi(A) twice,

the iteration coefficients can still be recovered without advancing the solution of the shadow problem,
which is of no interest. The CGS method often provides fast convergence; however, there is no reason
why the contraction operator should also reduce the once reduced vector Pi(A)r0: this can lead to a
highly irregular convergence.

Bi-CGSTAB (�)) is similar to the CGS method. However, instead of generating the sequence {P 2
i (A)r0},

it generates the sequence {Qi(A)Pi(A)r0} where the Qi(A) are polynomials chosen to minimize the
residual after the application of the contraction operator Pi(A). Two main steps can be identified for
each iteration: an OR (Orthogonal Residuals) step where a basis of order � is generated by a Bi-CG
iteration and an MR (Minimum Residuals) step where the residual is minimized over the basis generated,
by a method akin to GMRES. For � = 1, the method corresponds to the Bi-CGSTAB method of van
der Vorst [13]. For � > 1, more information about complex eigenvalues of the iteration matrix can be
taken into account, and this may lead to improved convergence and robustness. However, as � increases,
numerical instabilities may arise.

The transpose-free quasi-minimal residual method (TFQMR) (Freund and Nachtigal [3], Freund [4]) is
conceptually derived from the CGS method. The residual is minimised over the space of the residual
vectors generated by the CGS iterations under the simplifying assumption that residuals are almost
orthogonal. In practice, this is not the case but theoretical analysis has proved the validity of the method.
This has the effect of remedying the rather irregular convergence behaviour with wild oscillations in the
residual norm that can degrade the numerical performance and robustness of the CGS method. In general,
the TFQMR method can be expected to converge at least as fast as the CGS method, in terms of number
of iterations, although each iteration involves a higher operation count. When the CGS method exhibits
irregular convergence, the TFQMR method can produce much smoother, almost monotonic convergence
curves. However, the close relationship between the CGS and TFQMR method implies that the overall
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speed of convergence is similar for both methods. In some cases, the TFQMR method may converge
faster than the CGS method.

Faster convergence can usually be achieved by using a preconditioner. A left preconditioner M−1 can be
used by the RGMRES, CGS and TFQMR methods, such that Ā = M−1A ∼ In in (2), where In is the
identity matrix of order n; a right preconditioner M−1 can be used by the Bi-CGSTAB (�) method, such
that Ā = AM−1 ∼ In. These are formal definitions, used only in the design of the algorithms; in practice,
only the means to compute the matrix–vector products v = Au and v = AHu (the latter only being
required when an estimate of ‖A‖1 or ‖A‖∞ is computed internally), and to solve the preconditioning
equations Mv = u are required, that is, explicit information about M , or its inverse is not required at
any stage.

Preconditioning matrices M are typically based on incomplete factorizations [8], or on the approximate
inverses occurring in stationary iterative methods (see Young [14]). A common example is the incomplete
LU factorization

M = PLDUQ = A − R

where L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular with unit
diagonals, P and Q are permutation matrices, and R is a remainder matrix. A zero-fill incomplete LU
factorization is one for which the matrix

S = P (L + D + U)Q

has the same pattern of non-zero entries as A. This is obtained by discarding any fill elements (non-zero
elements of S arising during the factorization in locations where A has zero elements). Allowing some of
these fill elements to be kept rather than discarded generally increases the accuracy of the factorization
at the expense of some loss of sparsity. For further details see [1].

2.5 Iterative Methods for Real Symmetric and Complex Hermitian Linear
Systems

Two of the best known iterative methods applicable to real symmetric and complex Hermitian linear
systems are the conjugate gradient (CG) method [6], [5] and a Lanczos type method based on SYMMLQ
[9]. The description of these methods given below is for the real symmetric case. The generalization to
complex Hermitian matrices is straightforward.

For the CG method the matrix A should ideally be positive-definite. The application of CG to indefinite
matrices may lead to failure, or to lack of convergence. The SYMMLQ method is suitable for both
positive-definite and indefinite symmetric matrices. It is more robust than CG, but less efficient when A
is positive-definite.

Both methods start from the residual r0 = b−Ax0, where x0 is an initial estimate for the solution (often
x0 = 0), and generate an orthogonal basis for the Krylov subspace span{Akr0}, for k = 0, 1, . . . , by
means of three-term recurrence relations (Golub and Van Loan [5]). A sequence of symmetric tridiagonal
matrices {Tk} is also generated. Here and in the following, the index k denotes the iteration count. The
resulting symmetric tridiagonal systems of equations are usually more easily solved than the original
problem. A sequence of solution iterates {xk} is thus generated such that the sequence of the norms
of the residuals {‖rk‖} converges to a required tolerance. Note that, in general, the convergence is not
monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to
symmetric tridiagonal form, Tn = QT AQ; the solution xn would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the two
methods lies in the method of solution of the resulting symmetric tridiagonal systems of equations: the
CG method is equivalent to carrying out an LDLT (Cholesky) factorization whereas the Lanczos method
(SYMMLQ) uses an LQ factorization.

A preconditioner for these methods must be symmetric and positive-definite, i.e., representable by
M = EET , where M is non-singular, and such that Ā = E−1AE−T ∼ In in (2), where In is the
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identity matrix of order n. These are formal definitions, used only in the design of the algorithms; in
practice, only the means to compute the matrix-vector products v = Au and to solve the preconditioning
equations Mv = u are required.

Preconditioning matrices M are typically based on incomplete factorizations [7], or on the approximate
inverses occurring in stationary iterative methods (see Young [14]). A common example is the incomplete
Cholesky factorization

M = PLDLT PT = A − R

where P is a permutation matrix, L is lower triangular with unit diagonal elements, D is diagonal and
R is a remainder matrix. A zero-fill incomplete Cholesky factorization is one for which the matrix

S = P (L + D + LT )PT

has the same pattern of non-zero entries as A. This is obtained by discarding any fill elements (non-zero
elements of S arising during the factorization in locations where A has zero elements). Allowing some of
these fill elements to be kept rather than discarded generally increases the accuracy of the factorization
at the expense of some loss of sparsity. For further details see [1].

3 Recommendations on Choice and Use of Available Routines
Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Types of Routine Available

The routines available in this chapter divide essentially into three types: basic routines, utility routines
and black-box routines.

Basic routines are grouped in suites of three, and implement the underlying iterative method. Each
suite comprises a set-up routine, a solver, and a routine to return additional information. The solver
routine is independent of the matrix storage format (indeed the matrix need not be stored at all) and the
type of preconditioner. It uses reverse communication, i.e., it returns repeatedly to the calling program
with the parameter IREVCM set to specified values which require the calling program to carry out a
specific task (either to compute a matrix-vector product or to solve the preconditioning equation), to
signal the completion of the computation or to allow the calling program to monitor the solution. Reverse
communication has the following advantages.

(i) Maximum flexibility in the representation and storage of sparse matrices. All matrix operations are
performed outside the solver routine, thereby avoiding the need for a complicated interface with
enough flexibility to cope with all types of storage schemes and sparsity patterns. This also applies
to preconditioners.

(ii) Enhanced user interaction: the progress of the solution can be closely monitored by the user and
tidy or immediate termination can be requested. This is useful, for example, when alternative
termination criteria are to be employed or in case of failure of the external routines used to perform
matrix operations.

At present there are suites of basic routines for real symmetric and nonsymmetric systems, and for
complex non-Hermitian systems.

Utility routines perform such tasks as initializing the preconditioning matrix M , solving linear systems
involving M , or computing matrix-vector products, for particular preconditioners and matrix storage
formats. Used in combination, basic routines and utility routines therefore provide iterative methods
with a considerable degree of flexibility, allowing the user to select from different termination criteria,
monitor the approximate solution, and compute various diagnostic parameters. The tasks of computing
the matrix-vector products and dealing with the preconditioner are removed from the user, but at the
expense of sacrificing some flexibility in the choice of preconditioner and matrix storage format.

Black-box routines call basic and utility routines in order to provide easy-to-use routines for particular
preconditioners and sparse matrix storage formats. They are much less flexible than the basic routines,
but do not use reverse communication, and may be suitable in many simple cases.

The structure of this chapter has been designed to cater for as many types of application as possible. If
a black-box routine exists which is suitable for a given application you are recommended to use it. If

F11.6 [NP3445/2/pdf]



F11 – Sparse Linear Algebra Introduction – F11

you then decide you need some additional flexibility it is easy to achieve this by using basic and utility
routines which reproduce the algorithm used in the black-box, but allow more access to algorithmic
control parameters and monitoring. If you wish to use a preconditioner or storage format for which no
utility routines are provided, you must call basic routines, and provide your own utility routines.

3.2 Iterative Methods for Real Nonsymmetric and Complex Non-Hermitian
Linear Systems

The suite of basic routines F11BDF, F11BEF and F11BFF implements either RGMRES, CGS, Bi-
CGSTAB(�), or TFQMR, for the iterative solution of the real sparse nonsymmetric linear system Ax = b.
These routines allow a choice of termination criteria and the norms used in them, allow monitoring of
the approximate solution, and can return estimates of the norm of A and the largest singular value of
the preconditioned matrix Ā.

In general, it is not possible to recommend one of these methods in preference to another. RGMRES is
popular, but requires the most storage, and can easily stagnate when the size m of the orthogonal basis is
too small, or the preconditioner is not good enough. CGS can be the fastest method, but the computed
residuals can exhibit instability which may greatly affect the convergence and quality of the solution.
Bi-CGSTAB(�) seems robust and reliable, but it can be slower than the other methods. TFQMR can
be viewed as a more robust variant of the CGS method: it shares the CGS method speed but avoids
the CGS fluctuations in the residual, which may give, rise to instability. Some further discussion of the
relative merits of these methods can be found in [1].

The utility routines provided for real nonsymmetric matrices use the co-ordinate storage (CS) format
described in Section 2.1.1. F11DAF computes a preconditioning matrix based on incomplete LU
factorization, and F11DBF solves linear systems involving the preconditioner generated by F11DAF.
The amount of fill-in occurring in the incomplete factorization can be controlled by specifying either the
level of fill, or the drop tolerance. Partial or complete pivoting may optionally be employed, and the
factorization can be modified to preserve row-sums.

F11DDF is similar to F11DBF, but solves linear systems involving the preconditioner corresponding to
symmetric successive-over-relaxation (SSOR). The value of the relaxation parameter ω must currently
be supplied by the user. Automatic procedures for choosing ω will be included in the chapter at a future
mark.

An iterated Jacobi preconditioner can be applied using F11DKF for matrices stored in ordered CS format.
Note that this routine can also be used for symmetric matrices.

F11XAF computes matrix-vector products for real nonsymmetric matrices stored in ordered CS format.
An additional utility routine F11ZAF orders the non-zero elements of a real sparse nonsymmetric matrix
stored in general CS format.

The black-box routine F11DCF makes calls to F11BDF, F11BEF, F11BFF, F11DBF and F11XAF, to
solve a real sparse nonsymmetric linear system, represented in CS format, using RGMRES, CGS, Bi-
CGSTAB(�), or TFQMR, with incomplete LU preconditioning. F11DEF is similar, but has options for
no preconditioning, Jacobi preconditioning or SSOR preconditioning.

For complex non-Hermitian sparse matrices there is an equivalent suite of routines. F11BRF, F11BSF
and F11BTF are the basic routines which implement the same methods used for real nonsymmetric
systems, namely RGMRES, CGS, Bi-CGSTAB(�) and TFQMR, for the solution of complex sparse non-
Hermitian linear systems. F11DNF and F11DPF are the complex equivalents of F11DAF and F11DBF,
respectively, providing facilities for implementing ILU preconditioning. F11DRF implements a complex
version of the SSOR preconditioner. Utility routines F11XNF and F11ZNF are provided for computing
matrix-vector products and sorting the elements of complex sparse non-Hermitian matrices, respectively.
Finally, the black-box routines F11DQF and F11DSF are complex equivalents of F11DCF and F11DEF.

3.3 Iterative Methods for Real Symmetric and Complex Hermitian Linear
Systems

The suite of basic routines F11GDF, F11GEF and F11GFF implement either the conjugate gradient
(CG) method, or a Lanczos method based on SYMMLQ, for the iterative solution of the real sparse
symmetric linear system Ax = b. If A is known to be positive-definite the CG method should be chosen;
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the Lanczos method is more robust but less efficient for positive-definite matrices. These routines allow a
choice of termination criteria and the norms used in them, allow monitoring of the approximate solution,
and can return estimates of the norm of A and the largest singular value of the preconditioned matrix Ā.

The utility routines provided for real symmetric matrices use the symmetric co-ordinate storage (SCS)
format described in Section 2.1.2. F11JAF computes a preconditioning matrix based on incomplete
Cholesky factorization, and F11JBF solves linear systems involving the preconditioner generated by
F11JAF. The amount of fill-in occurring in the incomplete factorization can be controlled by specifying
either the level of fill, or the drop tolerance. Diagonal Markowitz pivoting may optionally be employed,
and the factorization can be modified to preserve row-sums.

F11JDF is similar to F11JBF, but solves linear systems involving the preconditioner corresponding to
symmetric successive-over-relaxation (SSOR). The value of the relaxation parameter ω must currently
be supplied by the user. Automatic procedures for choosing ω will be included in the chapter at a future
mark.

An iterated Jacobi preconditioner can be applied using F11DKF for symmetric matrices stored either
in ordered SCS or in ordered CS format. Note that this routine can also be used for non-symmetric
matrices.

F11XEF computes matrix-vector products for real symmetric matrices stored in ordered SCS format. An
additional utility routine F11ZBF orders the non-zero elements of a real sparse symmetric matrix stored
in general SCS format.

The black-box routine F11JCF makes calls to F11GDF, F11GEF, F11GFF, F11JBF and F11XEF, to
solve a real sparse symmetric linear system, represented in SCS format, using a conjugate gradient or
Lanczos method, with incomplete Cholesky preconditioning. F11JEF is similar, but has options for no
preconditioning, Jacobi preconditioning or SSOR preconditioning.

For complex Hermitian sparse matrices there is an equivalent suite of utility and black-box routines,
although the basic routines are not available at this Mark. F11JNF and F11JPF are the complex
equivalents of F11JAF and F11JBF, respectively, providing facilities for implementing incomplete
Cholesky preconditioning. F11JRF implements a complex version of the SSOR preconditioner. Utility
routines F11XSF and F11ZPF are provided for computing matrix-vector products and sorting the
elements of complex sparse Hermitian matrices, respectively. Finally, the black-box routines F11JQF and
F11JSF provide easy-to-use implementations of the CG and SYMMLQ methods for complex Hermitian
linear systems.

3.4 Direct Methods

Chapter F11 does not currently provide any routines specifically designed for direct solution of sparse
linear systems. However, the arguments of the various preconditioner generation routines can be chosen
in such a way as to produce a direct solution.

For example, routine F11DBF solves a linear system involving the incomplete LU preconditioning matrix

M = PLDUQ = A − R

generated by F11DAF, where P and Q are permutation matrices, L is lower triangular with unit diagonal
elements, U is upper triangular with unit diagonal elements, D is diagonal and R is a remainder matrix.

If A is non-singular, a call to F11DAF with LFILL < 0 and DTOL = 0.0 results in a zero remainder
matrix R and a complete factorization. A subsequent call to F11DBF will therefore result in a direct
method for real sparse nonsymmetric systems.

If A is known to be symmetric positive-definite, F11JAF and F11JBF may similarly be used to give a
direct solution. For further details see Section 8.4 of the document for F11JAF.

Complex non-Hermitian systems can be solved directly in the same way using F11DNF and F11DPF,
while for complex Hermitian systems F11JNF and F11JPF may be used.

Some routines specifically designed for direct solution of sparse linear systems can currently be found
in Chapter F01, Chapter F04 and Chapter F07. In particular, the following routines allow the direct
solution of nonsymmetric systems:
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Band F07BDF and F07BEF
Almost block-diagonal F01LHF and F04LHF
Tridiagonal F01LEF and F04LEF or F04EAF
Sparse F01BRF (or F01BSF) and F04AXF

and the following routines allow the direct solution of symmetric positive-definite systems:

Band F07HDF and F07HEF
Variable band (skyline) F01MCF and F04MCF
Tridiagonal F04FAF

4 Index

Basic routines for real nonsymmetric linear systems
set-up routine F11BDF
reverse communication RGMRES, CGS, Bi-CGSTAB(�) or TFQMR solver routine F11BEF
diagnostic routine F11BFF

Basic routines for complex non-Hermitian linear systems
set-up routine F11BRF
reverse communication RGMRES, CGS, Bi-CGSTAB(�) or TFQMR solver routine F11BSF
diagnostic routine F11BTF

Black-box routines for real nonsymmetric linear systems
RGMRES, CGS, Bi-CGSTAB(�) or TFQMR solver with incomplete LU preconditioning F11DCF
RGMRES, CGS, Bi-CGSTAB(�) or TFQMR solver with no preconditioning, Jacobi, or SSOR
preconditioning F11DEF

Black-box routines for complex non-Hermitian linear systems
RGMRES, CGS, Bi-CGSTAB(�) or TFQMR solver with incomplete LU preconditioning F11DQF
RGMRES, CGS, Bi-CGSTAB(�) or TFQMR solver with no preconditioning, Jacobi, or SSOR
preconditioning F11DSF

Utility routines for real nonsymmetric linear systems
incomplete LU factorization F11DAF
solver for linear systems involving preconditioning matrix from F11DAF F11DBF
solver for linear systems involving SSOR preconditioning matrix F11DDF
matrix-vector multiplier for real nonsymmetric matrices in CS format F11XAF
sort routine for real nonsymmetric matrices in CS format F11ZAF

Utility routines for complex non-Hermitian linear systems
incomplete LU factorization F11DNF
solver for linear systems involving preconditioning matrix from F11DNF F11DPF
solver for linear systems involving SSOR preconditioning matrix F11DRF
matrix-vector multiplier for complex non-Hermitian matrices in CS format F11XNF
sort routine for complex non-Hermitian matrices in CS format F11ZNF

Basic routines for real symmetric linear systems
set-up routine F11GDF
reverse communication CG or SYMMLQ solver routine F11GEF
diagnostic routine F11GFF

Black-box routines for real symmetric linear systems
CG or SYMMLQ solver with incomplete Cholesky preconditioning F11JCF
CG or SYMMLQ solver with no preconditioning, Jacobi, or SSOR preconditioning F11JEF

Black-box routines for complex Hermitian linear systems
CG or SYMMLQ solver with incomplete Cholesky preconditioning F11JQF
CG or SYMMLQ solver with no preconditioning, Jacobi, or SSOR preconditioning F11JSF

Utility routines for real symmetric linear systems
incomplete Cholesky factorization F11JAF
solver for linear systems involving preconditioning matrix from F11JAF F11JBF
solver for linear systems involving SSOR preconditioning matrix F11JDF
matrix-vector multiplier for real symmetric matrices in SCS format F11XEF
sort routine for real symmetric matrices in SCS format F11ZBF

[NP3445/2/pdf] F11.9



Introduction – F11 F11 – Sparse Linear Algebra

Utility routines for complex Hermitian linear systems
incomplete Cholesky factorization F11JNF
solver for linear systems involving preconditioning matrix from F11JNF F11JPF
solver for linear systems involving SSOR preconditioning matrix F11JRF
matrix-vector multiplier for complex Hermitian matrices in SCS format F11XSF
sort routine for complex Hermitian matrices in SCS format F11ZPF

Utility routines for both real symmetric and real non-symmetric linear systems
Iterated Jacobi preconditioner F11DKF

5 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have either been withdrawn or superseded. Those routines indicated
by a dagger are still present at Mark 19, but will be omitted at a future date. Advice on replacing calls
to these routines is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded
Routines’.

F11BAF† F11BBF† F11BCF† F11GAF† F11GBF† F11GCF†
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